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Synopsis

Skin-lightening products are commercially available for cosmetic

purposes to obtain lighter skin complexion. Clinically, they are also

used for treatment of hyperpigmentary disorders such as melasma,

café au lait spot and solar lentigo. All of these target naturally mel-

anin production, and many of the commonly used agents are

known as competitive inhibitors of tyrosinase, one of the key

enzymes in melanogenesis. In this review, we present an overview

of commonly used skin-whitening ingredients that are commercia-

lized, but we also hypothesize on other mechanisms that could be

important targets to control skin pigmentation such as for example

regulation of the adrenergic and glutaminergic signalling and also

control of tetrahydrobiopterins in the human skin.

Résumé

Les produits éclaircissants sont disponibles dans le commerce pour

des buts cosmétiques afin d’obtenir un tient plus clair. Ils sont égale-

ment utilisés en clinique, pour le traitement de troubles hyper pig-

mentaires comme le melasma, les taches café au lait et le lentigo

solaire. Tous ces produits ont pour cible la production naturelle de

mélanine et beaucoup de ceux généralement utilisés sont reconnus

comme des inhibiteurs compétitifs de la tyrosinase, une des enzymes

clés de la mélanogénèse. Dans cette revue, nous présentons une vue

d’ensemble des ingrédients généralement utilisés et commercialisés

comme blanchissant cutanés mais nous formulons aussi l’hypothèse

que d’autres mécanismes pourraient être des cibles importantes pour

contrôler la pigmentation de la peau comme par exemple la régula-

tion du signal adrénergique et glutaminergique ou le contrôle des tet-

rahydrobiopterines dans la peau humaine.

Introduction

Melanogenesis

Human skin colour stems from in the outermost layer of the skin,

the epidermis where the pigment-producing cells melanocytes are

localized to produce melanin. Upon exposure of the skin to UV

radiation, melanogenesis is enhanced by the activation of the key

enzyme of melanogenesis, tyrosinase. Tyrosinase is a glycoprotein

located in the membrane of the melanosome, a minifactorial vesicle

inside the melanocyte (Fig. 1). It has an inner melanosomal

domain that contains the catalytic region (approximately 90% of

the protein), followed by a short transmembrane domain and a

cytoplasmic domain composed of approximately 30 amino acids

[1]. Histidine residues are present in the inner (catalytic) portion of

tyrosinase and bind copper ions that are required for tyrosinase

activity [2]. Melanogenesis takes place in the melanosomes. Two

types of melanin are synthesized within melanosomes: eumelanin

and pheomelanin [3]. Eumelanin is a dark brown-black insoluble

polymer, whereas pheomelanin is a light red-yellow sulphur-con-

taining soluble polymer [3].

Tyrosinase catalyses the first two steps of melanin production:

the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine

(L-DOPA) and the subsequent oxidation of this o-diphenol to the

corresponding quinone, L-dopaquinone [4–7]. Even though L-tyro-

sine is the building stone for melanin, it can only be transported

into the melanosome by facilitated diffusion [8, 9]. In this context,

it is noteworthy that the concentration of L-tyrosine for melano-

genesis depends on the conversion of the essential amino acid

L-phenylalanine by intracellular phenylalanine hydroxylase (PAH)

activity and in contrast to L-tyrosine, L-phenylalanine is actively

transported through the melanosomal membrane to ensure high

content of L-tyrosine inside this organelle. The importance of
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Figure 1 Electron microscopy picture of a DOPA-stained melanocyte. Note

the abundant numbers of dark and well-defined melanosomes.

International Journal of Cosmetic Science, 2011, 33, 210–221 doi: 10.1111/j.1468-2494.2010.00616.x

ª 2011 The Authors

ICS ª 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie210



L-phenylalanine for melanogenesis is demonstrated in the skin

phototypes I–VI where epidermal PAH activities are correlated line-

arly [10].

Following the formation of dopaquinone, the melanin pathway

is divided into synthesis of the black-brownish eumelanin and red-

yellow pheomelanin [11] where there is a spontaneous conversion

to leucodopachrome and dopachrome. In the eumelanin pathway,

dopachrome is either spontaneously converted to 5,6-dihydroxyin-

dole or is enzymatically converted to 5,6-dihydroxyindole-2-car-

boxylic acid via enzymatic conversion by dopachrome tautomerase

(DCT), also referred to as tyrosine-related protein-2 (TRP-2). There

are two tyrosinase-related proteins, TRP-1 and TRP-2, which are

structurally related to tyrosinase and share approximately 40%

amino acid homology, suggesting that they originated from a com-

mon ancestral gene [12–14]. TRP-1 and TRP-2 reside within the

melanosomes and, like tyrosinase, span the melanosomal mem-

brane [15]. It has been suggested that TRP-1 increases the ratio of

eumelanin to pheomelanin [16, 17]. In addition, they have been

demonstrated to increase tyrosinase stability [18, 19]. However,

the role of TRP-1 and TRP-2 is not totally clarified yet, and it is

also not clear whether other enzymes also play important roles in

the eumelanogenic pathway.

Finally, the polymerization of indoles and quinones leads to

eumelanin formation [20]. The pheomelanin pathway branches

from the eumelanin pathway at the L-dopaquinone step and is

dependent on the presence of cysteine which is actively transported

through the melanosomal membrane. Cysteine reacts with L-dopa-

quinone to form cysteinyl-dopa [20]. The latter is then converted

to quinoleimine, alanine-hydroxyl dihydrobenzothazine and poly-

merizes to pheomelanin.

Tyrosinase can also be indirectly activated by tyrosine hydroxy-

lase isoenzyme 1 (TH1) as it that has been shown to be present in

melanosomes and catalyzes L-dopa synthesis [21]. In turn, L-dopa

can act as a cofactor for tyrosinase [22].

Redox conditions in the melanosomes are crucial for the balance

between the production of eumelanins and pheomelanins. The for-

mation of eu- or pheomelanin is directly determined by reduced

glutathione (GSH) (high GSH for eumelanin and low for pheomela-

nin). Therefore, the expression and functional activity of antioxi-

dant enzymes such as catalase, glutathione peroxidase, glutathione

reductase and thioredoxin reductase likely modify the melanogenic

pathway [23] (Fig. 2).

Also, melanin itself has an important role in oxidative homo-

eostasis in the skin. Eumelanin has an ability to both scavenge

and quench both oxygen- and carbon-derived free radicals [24,

25]. Pheomelanin do not have the same properties and can even

be a source for free radical production when UV irradiated.

Besides quenching free-radicals and acting as a physical barrier

against UV radiation, the melanin polymer through its negatively

charged properties has the ability to bind amines and heavy

metals [26].

Melanogenic regulatory proteins

The discovery about 10 years ago of the gene encoding the basic

helix–loop–helix leucine zipper microphthalmia-associated tran-

scription factor gene (MITF) [27, 28], provided a major impetus to

the study of transcription regulation in the melanocyte lineage.

Indeed, MITF appears to be at the heart of a regulatory network of

transcription factors and signalling pathways that control the sur-

vival, proliferation and differentiation of melanoblasts and melano-

cytes (reviewed in [29]). Not only the melanocyte development is

affected by this protein but also pigmentation via its transcriptional

regulatory effect on tyrosinase, TRP-1 and TRP-2 [30]. MITF was

shown to be a key transcription factor for Rab27A [31], a protein

important for melanosome transport. Therefore, MITF plays a cen-

tral role in melanin synthesis, as well as melanosome biogenesis

and transport.

Paracrine melanogenic stimulators

There are number of paracrine stimulators of melanogenesis such

as proopiomelanocortin (POMC)-derived peptides (a-MSH, b-MSH,

ACTH) [32]. These melanotrophic hormones were discovered in the

early 1950s by Dr. Aaron B. Lerner [33–35]. POMC expression in

keratinocytes is induced by UV [36]. The pivotal effect of these hor-

mones on melanogenesis has been demonstrated in vivo where sys-

temic administration of a-MSH, b-MSH, or ACTH increases skin

pigmentation predominantly in sun-exposed areas [37, 38]. The

POMC peptides exert its effect through a cyclic adenosine

3’,5’-monophosphate (cAMP)-dependent mechanism when binding

to the Gs-protein-coupled receptor melanocortin receptor 1 (MC1R)

[39–42]. This intracellular second messenger is well known to reg-

ulate melanogenesis. Stimulation of specific Gs-protein-coupled
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Figure 2 Melanin synthetic pathway. Melanin

synthesis begins with catalysation of the substrates

L-phenylalanine and l-tyrosine to produce L-DOPA

via phenylalanine hydroxylase (PAH), tyrosinase

and partly tyrosinase hydroxylase 1 (TH-1). The

pathways are then divided into eumelanogenesis or

pheomelanogenesis. The other melanogenic

enzymes are TRP-2 (DCT) and TRP-1 for eumela-

nogenesis. No specific enzymes have been found

that are involved in pheomelanogenesis so far.

ª 2011 The Authors

ICS ª 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie
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receptors leads to the activation of adenylyl cyclase (AC). AC

produces cAMP which consequently stimulates the melanogenic

pathway [39–42]. This involves the activation of protein kinase A

(PKA), which then phosphorylates enzymes, ion channels and sev-

eral regulatory proteins eventually leading to a change in gene

expression. Regulation of transcriptional activity by activated PKA

involves phosphorylation of cAMP-responsive element-binding pro-

tein (CREB) and activation of microphthalmia-associated transcrip-

tion factor (MITF) [43, 44]. In turn, MITF efficiently activates the

melanogenetic enzyme genes, such as tyrosinase and TRP-1/TRP-2

in cultured cells [45, 46] (Fig. 3).

It was recently discovered that a-MSH can increase melanin

synthesis by a mechanism independent of MC1R by binding to

6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4), a competitive

inhibitor of tyrosinase, and release the inhibitory effect on tyrosi-

nase activity [47].

Even though the POMC peptides have important effect on

human skin colour, there are other paracrine factors that are of

pivotal importance for skin pigmentation such as endothelin-1,

stem cell factor, prostaglandins and catecholamines to mention

some [48–52].

Skin-lightening ingredients

As of increasing focus on skin appearance, many cosmetic and

pharmaceutical companies are focusing on research that will alter

skin pigmentation.

There are today many known substances that can reduce the

level of pigmentation in the skin. Many of these actives have a tyr-

osinase-inhibiting effect leading to reduced total melanin produc-

tion. Some of the tyrosinase inhibitors used today is for example

kojic acid, arbutin and different kinds of vegetal or herb extracts.

There are also molecules known to have an effect on the transfer

of melanin from melanocytes to keratinocytes, leading to an overall

lighter skin colour such as nicotinamide and soyabean. Substances

that increase the desquamation of the skin are also commonly used

to remove excessive melanin content within the skin, for instance

retinoic acid.

In this article, we present a review of several important depig-

menting and lightening agents reported in the literature for use in

skin-lightening products. Also, new hypothesis for mechanistic

skin-lightening targets are proposed.

Skin-lightening activity by tyrosinase inhibition

The most common target for skin-lightening activities is tyrosinase

inhibition and below some of the most commonly used ones are

reviewed.

Quinone-related compounds

Hydroquinone (1,4-dihydroxybenzene) has been the conventional

standard for treating hyperpigmentation for more than 40 years

[53–55].

The compound can be found in tea, wheat, berries, beer and cof-

fee. Hydroquinone interacts with tyrosinase by binding histidines at

the active site of the enzyme resulting in reduction in skin pigmen-

tation in general, in melanosis but also unaffected skin of vitiligo

patients to reduce overall pigmentation [56]. Additionally,

hydroquinone induced generation of reactive oxygen species, and

Figure 3 The melanocortin signalling pathway.

a-MSH binds to and activates the Gs protein-

coupled MC1R. The Gs family of G proteins (includ-

ing Ga, Gb and Gc) transmits signals from MC1R to

AC which, in turn, catalyses the conversion of

cytoplasmic ATP to cAMP. Increased levels of

cAMP act as a second messenger to activate PKA,

which, upon activation, translocates to the nucleus

where it phosphorylates the CREB family of tran-

scription factors. Phosphorylated CREBs then

induce the expression of genes containing CRE

(cAMP-responsive elements) consensus sequences

in their promoters, such as the transcription factor

MITF. The transcription factor MITF binds to the

promoter of the pigmentary genes tyrosinase TRP-1

and TRP-2 (DCT).
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quinones leads to the oxidative damage of membrane lipids and

proteins such as tyrosinase.

Hydroquinone is also thought to inhibit pigmentation by

depleting glutathione, reducing DNA and RNA synthesis with

concomitant melanosome degradation and melanocyte damage

[57–61].

However, the golden days of hydroquinone seem to have come

to an end as this potent skin-lightening agent can lead to perma-

nent loss of melanocytes because of its oxidative damage of mem-

brane lipids leading to irreversible loss of inherited skin colour

[53]. In addition, it was recognized that this substance is trans-

ported rapidly from the epidermis into the vascular system and is

detoxified within the liver into inert compounds [62, 63]. Because

of the risks of side effects such as permanent depigmentation and

exogenous ochronosis following long-term use, hydroquinone has

been banned by the European Committee (24th Dir 2000/6/EC).

Another commonly used quinone used for skin-lightening

purposes is arbutin, which is a derivative of hydroquinone (hydro-

quinone-O-b-D-glucopyranoside) and is found in cranberries,

blueberries, wheat and pears [53, 64, 65]. Arbutin is used as an

effective treatment of hyperpigmentary disorders and displays less

melanocyte cytotoxicity than hydroquinone. As for hydroquinone,

arbutin inhibits melanogenesis by competitively and reversibly

binding tyrosinase without influencing the mRNA transcription of

tyrosinase [66]. The milder effect of arbutin compared to its mother

compound, hydroquinone could be attributed to the glycoside form

where the glycosidic bond needs to be cleaved prior affecting tyrosi-

nase [67].

The synthetically produced derivate of arbutin, deoxyarbutin,

has been shown to be effective and safer skin-lightening agent [59,

64, 68, 69]. Hu et al., compared the effect of hydroquinone, arbu-

tin and deoxyarbutin and found that all three compounds had

similar inhibitory effects on tyrosinase activity. The protein expres-

sion of tyrosinase was not affected by arbutin nor hydroquinone,

whereas an effect on the protein level was seen by deoxyarbutin.

Also, less melanocyte cytotoxicity was seen by deoxyarbutin com-

pared to the two other quinones [68]. In a human clinical trial,

topical treatment with deoxyarbutin for 12 weeks resulted in a sig-

nificant reduction in overall skin lightness and improvement in

solar lentigines in a population of light-skinned or dark-skinned

individuals, respectively [70].

Interestingly, a mechanism of in vivo control of quinone-

mediated stress was proposed by Schallreuter et al. The authors

found that the antioxidant system thioredoxin/thioredoxin reduc-

tase isoenzyme I/II and tetrahydrobiopterin are capable of electro-

chemically reducing quinones within the epidermis protecting the

skin from topical applications containing quinones [71]. However,

taking into consideration that fair skin individuals have low thiore-

doxin reductase/thioredoxin activities [72] together with low epi-

dermal tetrahydrobiopterin levels [10], it was proposed that these

individuals are more sensitive to topical applications of quinones,

and therefore melanocyte toxicity could be more pronounced in

this group [71].

Skin-lightening actives originating from microorganisms

There are also other non-quinone–related agents with tyrosinase-

inhibiting activities such as Kojic acid (5-hydroxy-2-hydroxy-

methyl-4H-pyran-4-one). Kojic acid is a naturally occurring

hydrophilic fungal metabolite obtained from species of Acetobacter,

Aspergillus and Penicillium [73]. The activity of kojic acid is believed

to arise from chelating copper atoms in the active site of tyrosinase

as well as suppressing the tautomerization of dopachrome to

5,6-dihydroxyindole-2-carboxylic acid [59, 74]. Although kojic acid

is a popular treatment for melasma, it can cause contact dermati-

tis, sensitization and erythema [65].

Azelaic acid (1,7-heptanedicarboxyilic acid) is a saturated

dicarboxylic acid found naturally in wheat, rye, and barley. It is a

natural substance that is produced by Pityrosporum ovale, a yeast

strain [75, 76]. It is used as a treatment for acne, rosacea, skin pig-

mentation, freckles, nevi and senile lentigines [57, 64, 69]. The

compound is able to bind amino and carboxyl groups and may pre-

vent the interaction of tyrosine in the active site of tyrosinase and

thus function as a competitive inhibitor. Interestingly, azelaic acid

has been shown to inhibit thioredoxin reductase in guinea pig and

human skin, on cultures of human keratinocytes, melanocytes,

melanoma cells, murine melanoma cells and on purified enzymes

from Escherichia coli, rat liver, and human melanoma [72]. This

might explain the antiproliferative and cytotoxic effect of azelaic

acid as thioredoxin reductase, the synthesis of deoxyribonucleo-

tides, the substrate for DNA synthesis in the S-phase of the cell

cycle [77].

Flavonoid-like agents

There are approximately 4000 flavonoids identified to date, and

this class of plant polyphenols can be found in leaves, bark and

flowers. They are reported to have a variety of effects such as

anti-inflammatory, antiviral, antioxidant and anticarcinogenic

properties [59, 60, 75]. The main action behind the pigment-

reducing effect of flavonoids may be the ROS-scavenging proper-

ties and the ability to chelate metals at the active site of

metalloenzymes [60].

A number of flavonoids are frequently used in skin-lightening

preparations such as aloesin, hydroxystilbene derivates and licorice

extracts.

Aloesin has been proven to competitively inhibit tyrosinase but

also been shown to inhibit TH and DOPA oxidase activities [78].

Some of the more efficient pigment-lightening flavonoid subcate-

gories are the hydroxystilbene compounds, of which resveratrol is

one common example. Resveratrol is found in red wine and has

been shown to reduce not only tyrosinase activity but also MITF

expression in B16 mouse melanoma cells [60, 79].

Another flavonoid is licorice, more specifically glabiridin, the

main ingredient of the hydrophobic fraction of licorice extract. This

ingredient has been shown to inhibit tyrosinase activity in B16

murine melanoma cells [80, 81].

There are some controversies however regarding the use of fla-

vonoids in skin-lightening preparations as some flavonoids are

known to increase melanogenesis. A good example of this contra-

diction is the citrus flavonoid naringenin, which has been shown

to increase melanogenesis and the expression of melanogenic

enzymes [82]. An additional described example is quercetin that

was shown to induce melanogenesis in a reconstituted three-

dimensional human epidermal model, where both melanin con-

tent and tyrosinase expression were markedly increased [83].

Other opposing examples of flavonoids are taxifolin and luteolin

that were shown to effectively inhibit tyrosinase-catalysed oxida-

tion of L-dihydroxyphenylalanine in cell-free extracts and in liv-

ing cells and thereby reducing melanogenesis. In contrast, they

attributed a stimulatory effect on tyrosinase protein levels,

although the overall pigmentation was decreased [84]. Further

research is needed to investigate the reason for paradoxical

results for flavonoids.
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Inhibition of melanosomal transfer

A critical component of skin pigmentation is the transfer of mature

melanosomes into the keratinocytes. Transfer of melanosomes is

mediated via the melanocyte dendrites to surrounding keratino-

cytes (Fig. 4). Even though much is known about the keratinocytes

and melanocytes individually, the interactions between these cells

still need to be mechanistically clarified to fully understand the

transfer of melanin.

For the skin-lightening industry, melanosomal transfer has been

excessively studied, and the search for actives inhibiting this action

is a continuous process.

Protease-activated receptor 2 (PAR-2) inhibitors

The transmembrane G-protein-coupled receptor protease-activated

receptor 2 (PAR-2) has been suggested to have an impact on mela-

nosomal transfer. It was shown that activation of PAR-2 increased

pigmentation, whereas inhibition of this receptor resulted in

decreased pigmentation [85]. Within the epidermis, PAR-2 is

expressed on keratinocytes only, and therefore it is believed that

PAR-2 activates phagocytic capacity of keratinocytes and in this

way promote melanosomal uptake [86] via cAMP and activation of

the G-protein, Rho [87]. Soymilk and soybean extracts are natural

skin-lightening remedies that are suggested to inhibit PAR-2 acti-

vation in the skin and result in skin lightening [88, 89].

Niacinamide

Niacinamide is a biologically active form of niacin (vitamin B3)

and is found in yeast and root vegetables [90] and is an important

precursor of NADH (nicotinamide adenine dinucleotide) and

NADPH (nicotinamide adenine dinucleotide phosphate). These

co-enzymes are found in all living cells, and the effect of niacina-

mide is therefore rather extensive. Several benefits in terms of

improved barrier function, reduced sebum production and

improved appearance of photo-aged skin including hyperpigmenta-

tion, redness and wrinkles have been described by topical usage of

niacinamide [91–93].

The effect of niacinamide on hyperpigmentation is believed to

occur through inhibition of melanosomal transfer. Hakozaki et al.

showed that niacinamide has no effect on the catalytic activity of

mushroom tyrosinase or on melanogenesis in monocultures of mel-

anocytes. However, it gave 35–68% inhibition of melanosome

transfer in the coculture model and reduced cutaneous pigmenta-

tion [91].

Also, lectins and their glycoconjugates have been shown to

interrupt melanosome transfer. Experiments using fluorochrome

labelled melanosomes quantified by flow cytometry showed

15–44% inhibition of transfer when stimulated with lectins and

neoglycoproteins [94]. The exact mechanism by which lectins are

acting on melanosomal transfer remains to be elucidated.

Acceleration of epidermal turnover and
desquamation

Chemical agents used to exfoliate skin are also often used as skin-

lightening ingredients because they remove the uppermost layer of

keratinocytes containing melanin [57]. Common examples of such

agents are acids such as a-hydroxyacids, salicylic acid, linoleic acid

and retinoic acids. Except for their activity on acceleration of epi-

dermal turnover [59, 60, 65, 95–97], several of these acids have

also been shown to have effect on tyrosinase. For example,

a-hydroxyacids is complementing its action on desquamation with

direct inhibition of tyrosinase without influencing mRNA or protein

expression [65, 97, 98]. The smallest a-hydroxy acid is glycolic

acid (hydroxyacetic acid or 2-hydroxyethanoic acid). Glycolic acid

can be isolated from natural sources, such as sugarcane, sugar

beets, pineapple, cantaloupe and unripe grapes.

Also, unsaturated fatty acids such as linoleic acid show effect on

tyrosinase activity, meanwhile retinoid acids is thought to have an

inhibitory effect on tyrosinase transcription [99, 100].

Another unsaturated fatty acid that demonstrates skin-lightening

effects is octadecenedioic acid, which has been shown to exert its

effect by binding to the peroxisome proliferator-activated receptor-c
(PPAR-c) and thereby inhibiting the mRNA and protein levels of

tyrosinase [101]. Moreover, synergistic effect of octadecenoic acid

and plant extract of Rumex Occidentalis has been reported in

reconstructed tanned epidermis [102], where the Rumex extract

showed direct inhibition of tyrosinase activity [103].

In contrast to unsaturated fatty acids, saturated fatty acids such

as palmitic acid and stearic acid have opposite action on melano-

genesis, resulting in a controversial increased activity of tyrosinase

together with increased melanin production [96].

Antioxidants

The idea behind using antioxidants for skin-lightening activities lies

in the hypothesis that the oxidative effect of UV-irradiation contri-

butes to activation of melanogenesis. UV irradiation can produce

reactive oxygen species (ROS) in the skin that may induce melano-

genesis by activating tyrosinase as the enzyme prefers superoxide

anion radical (O2
)) over O2 [104]. Redox agents can also influence

skin pigmentation by interacting with copper at the active site of

tyrosinase or with o-quinones to impede the oxidative polymeriza-

tion of melanin intermediates [57, 105]. Antioxidants can also

NKI beteb

(A) (B)

Figure 4 Human epidermal melanocytes stained

for a melanosomal marker, NKI-beteb (A). Note the

strong melanosomal staining in the dendritic tips

at a higher magnification (B). The transfer of these

melanosomes can be inhibited by specific skin-light-

ening ingredients.
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reduce the direct photooxidation of pre-existing melanin. Common

antioxidants used in skin-lightening formulations are vitamin E,

vitamin C and vitamin B [106].

Conjugates to improve the stability and effect of
skin-lightening agents

Many skin-lightening actives have problems with cytotoxicity or

instability during storage. Therefore, several attempts have success-

fully been made to synthesize conjugates to improve their proper-

ties. For example, Kojic acid has been conjugated by converting the

C-7 hydroxyl group into an ester, hydroxyphenyl ether, glycoside,

amino acid derivate or tripeptide derivates [107]. In addition to

increased stability, the effect can also be modified. One example of

successful conjugation is kojic acid–amino acid amides leading to

superior effect with 90% increased tyrosinase inhibitory activity

[107]. Another derivate commonly used is magnesium ascorbyl

phosphate, which is a stable derivate of ascorbic acid (vitamin C),

leading to reduced skin pigmentation [108].

In addition, 3-aminopropyl dihydrogen phosphate (3-APPA) is a

molecule that has been conjugated with both ascorbic acid and

kojic acid. The formed molecules ascorbyl-3-aminopropyl phosphate

and kojyl-3-aminopropyl phosphate have proven to both be more

stable than the individual molecules and deliver better into the skin

resulting in a more efficient lightening effect [109].

Table I shows the in vivo/in vitro studies conducted for each

skin-lightening actives.

Hypothesis for new skin-lightening targets

To date, many skin-lightening actives are tested through their tyro-

sinase-inhibiting effect. However, there are many pathways that

could be utilized in skin-lightening attempts. In the following para-

graphs, some of them are described. These mechanisms may be of

interest in the search for new skin-lightening actives.

Regulation of b2-adrenoreceptors and catecholamines to target skin

pigmentation

The classical cAMP-mediated pigmentation is thought to occur

through ligand binding of POMC peptides to MC1R to increase the

level of intracellular cAMP [32, 39, 42, 110, 111].

However, as studies in POMC-deficient mice have shown that

these mice have black fur although they lack a-MSH and other

Table I An overview of in vitro and in vivo studies carried out for each reviewed skin-lightening ingredient

Skin-Lightening

Ingredient In Vitro studies In Vivo studies

Hydroquinone Inhibition of tyrosinase activity and melanin inhibition [128] and

inhibition of cellular metabolism by affecting both DNA and RNA

syntheses [61].

Clinical studies in patients with melasma shows reduction of

pigmentation [54, 55].

Arbutin/deoxyarbutin Inhibition of tyrosinase activity and melanin production [129], [66].

Inhibition of tyrosine hydroxylase and DOPAoxidase activities [130].

Clinical trial showed overall skin lightness and improvement in solar

lentigines after 12 -week treatment [70].

Kojic Acid/Kojic acid

tripeptides

Inhibition of catecholase activity of tyrosinase [74]. Comparative

studies with kojic acid-tripeptides and unconjugated kojic acid [75].

Comparative study on skin-lightening effect of hydroquinone and

kojic acid showed similar effects [131].

Azelaic acid Melanin inhibition in melanoma cells [132]. Clinical study on patients with facial hyperpigmentation showed an

improvement in pigment intensity by one or more grades [133].

Comparative study showed 20% azelaic acid is more effective than

2% hydroquinone in patients with melasma [128]

Aloesin Inhibition of tyrosinase, tyrosine hydroxylase and DOPA oxidase

activities. Also synergistic action with arbutin shown [78, 134].

Clinical study showed suppressed pigmentation by 34% in volar

forearm [135].

Resveratrol Reduction in MITF and tyrosinase promoter activities (transfection

studies in melanoma cells) [79, 136].

No trials in humans. Dark-skinned Yucatan swine treated with

resveratrol showed visible skin lightening, which was confirmed

histologically [79]

Glabiridin (Liquirice) Glabrene and isoliquiritigenin in the licorice extract can inhibit both

mono- and diphenolase tyrosinase activities [81]

Trial for melasma treatment using liquritin cream showed good to

excellent results in 90% of the patients [137]

Soyabean Soyabean inhibits protease-activated receptor 2 cleavage, affects

cytoskeletal and cell surface organization, and reduces keratino

cyte phagocytosis [88]

Study on facial photodamage showed that soyabean is more

efficient than the vehicle in improving mottled pigmentation [89]

Niacinamide No catalytic activity of mushroom tyrosinase or on melanogenesis in

monocultures of melanocytes. 35–68% inhibition of melanosome

transfer in the coculture model [91]

Clinical study showed significant improvements versus control in

end points: fine lines/wrinkles, hyperpigmentation spots, texture,

and red blotchiness [92]

a-Hydroxyacid Glycolic acid and lactic acid inhibited melanin formation in human

melanoma cells. Tyrosinase activity was inhibited. No effect on

tyrosinase, TRP-1 and TRP-2 mRNA [98]

Study on topical application of a 10% glycolic acid for melasma

showed improvement in 91% of patients [138].

Comparative study with hydroquinone showed that glycolic acid is

not more efficient that hydroquinone [139]

Retinoic acid Inhibition of tyrosinase/TRP-1 protein expression concomitant with

melanin synthesis [99]

Study on overall skin lightening in face showed lighter pigmentation

in 68% of the patients [140].

Clinical trial on melasma showed only marginal significant pigment

reduction compared to vehicle [141]

Vitamin C (magnesium

ascorbyl phosphate)

Suppression of melanin formation on purified tyrosinase and in

melanocytes [108]

Clinical study using magnesium-L-ascorbyl-2-phosphate cream

resulted in lightening effect in 19 of 34 patients with chloasma or

senile freckles [108]

octadecenedioic acid Reduction in tyrosinase mRNA and protein expression concomitant

with inhibition of melanogenesis [101]

Studies on octadecenedioic acid resulted in a more even skin tone

and overall lighter skin colour [102, 142]
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POMC-related peptides [112], it is likely that alternative pathways

can activate intracellular cAMP and induce melanogenesis.

One alternative cAMP-dependent pathway that has been pro-

posed to be active and turn on melanogenesis in these mice is the

adrenergic receptor, especially since the POMC-deficient mice was

shown to have an abnormally large adrenal gland [112, 113].

Moreover, human epidermal melanocytes express b2-adrenergic

receptors (b2-AR) [51, 114], and its activation was shown to

increase melanin synthesis [51, 115]. Interestingly, UV-induced

melanogenesis was found to be blocked by b2-AR antagonists

[115]. The importance of the adrenergic system in pigmentation

has also been clinically shown in vitiligo where beta-adrenergic

antagonist may increase the depigmentation process in this skin

disorder [116].

Because of these new findings, it would be of interest to investi-

gate whether b2-AR antagonists could have skin-lightening activity

in vivo. It is also noteworthy that blockade of these receptors signifi-

cantly improves wound healing [116, 117], which could have

implications targeting the ageing process.

New ways to inhibit MITF

As MITF is the transcriptional regulator of tyrosinase, it obviously

plays a critical role in the regulation of melanogenesis. Interest-

ingly, glutaminergic receptors have been shown to specifically

affect MITF expression dramatically. Blockage of the ionotropic glu-

taminergic receptors resulted in a sharp reduction in the protein

expression of MITF [118]. Moreover, inhibition of these receptors

caused a rapid change in melanocyte morphology with reversible

retraction of melanocyte dendrites, which was associated with

disorganisation of actin and tubulin microfilaments [116, 118].

The importance of the glutaminergic system in pigment cells was

also demonstrated recently where over-expression of metabotropic

glutaminergic receptor 1 in mouse melanocytes led to melanocyte

hyperproliferation [119]. In the light of these results, glutaminergic

receptors may be a successful target for skin-lightening ingredients.

Control of pigmentation by 6(R)-L-erythro-5,6,7,8-tetrahydrobiop-

terin (6BH4)

6BH4 is a rate-limiting cofactor for PAH and TH and an allosteric

inhibitor for tyrosinase and hence of great importance for melano-

genesis [116, 117, 120]. The activities of PAH, THI and tyrosinase

are controlled by the cofactor 6BH4 which in turn acts as the

essential electron donor for PAH to produce L-tyrosine from L-phe-

nylalanine and for THI to convert l-tyrosine to L-DOPA [36, 37].

Moreover, 6BH4 is an allosteric inhibitor of tyrosinase [29, 38]. In

support for the above-suggested ‘three-enzyme theory’ of melano-

genesis, it has been documented that both melanocytes and kerati-

nocytes hold the capacity for autocrine de novo synthesis/regulation

and recycling of 6BH4 [17].

Moreover, it was demonstrated that melanosomes contain indeed

6BH4 as well as its isomer 7BH4 at physiological concentrations

[18, 39]. Epidermal levels of 6BH4 correlate with skin phototypes

I–VI with increasing levels from fair to the dark skin, and 6BH4

de novo synthesis increases after UV exposure, supporting their

close relationship with skin pigmentation [34]. In conclusion,

6BH4 is one of the major players in the regulation of constitutive

and de novo skin colour. More recently, 6BH4 analogues such as

6,7-(R,S)-dimethyl-tetrahydropterine and 6-(R,S)-tetrahydromonap-

Figure 5 Illustration of four new potential trans-

duction stages to reduce overall skin pigmentation,

targeting the b2-adrenergic receptor using anta-

gonists, MITF through glutaminergic regulation,

regulation of 6BH4 and control of sex hormones.
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terine have been studied as possible tyrosinase inhibitors, and it

has been suggested that these compounds, like 6BH4, can act

through an uncompetitive allosteric mechanism [116, 117, 121].

It has also been demonstrated that 6BH4 (and their analogues)

reduces o-dopaquinone non-enzymatically [116, 117, 122]. The

importance of 6BH4 in melanogenesis has also been confirmed

clinically in the depigmentation disorder vitiligo, where there is an

excess of 6BH4 together with its oxidation product 6-biopterin.

Because of these findings, it would be of interest to study the regu-

lation of skin pigmentation by 6BH4, and it is analogues to find the

next generation of skin-lightening actives.

Regulation of sex hormones

Androgens affect several functions of human skin, such as sebac-

eous gland growth and differentiation, hair growth, epidermal

barrier homoeostasis and wound healing. On the other hand,

oestrogens have been implicated in skin aging, pigmentation, hair

growth, sebum production and skin cancer (reviewed in [123]).

A number of studies have shown that epidermal melanocytes

are oestrogen responsive. However, there are conflicting reports in

the literature concerning the effect of oestrogen on pigmentation.

In female guinea pigs, after ovariectomy, the melanin content of

epidermal melanocytes decreases; many become smaller in size and

exhibit shortened dendritic processes [124], which implicates that

oestrogen would stimulate pigmentation. Furthermore, ovariecto-

mized animals that were treated with estradiol either locally or sys-

temically showed an increase in melanin both inside and outside

the melanocytes in all regions examined [124].

In contrast, a study of male Syrian hamsters demonstrated that

estradiol produced a dose-related decrease in the number of scrotal

skin melanocytes [125].

Furthermore, in the same study, induced pigmentation of the

costovertebral spot hair follicles by 5a-dihydrotestosterone was

reversed by estradiol.

However, after ovariectomy, the skin of female rhesus monkeys

is paler, and pregnant women and women on hormonal contracep-

tion have increased prevalence of melasma [126].

Even though more work is needed to rule out the effect of sex

hormones on pigmentation, it is clear that these hormones affect

our skin color.

In fact, the androgen precursor hormone dehydroepiandroster-

one was shown to reduce skin pigmentation by 10% in women

taking this hormone orally [127]. This implicates the importance

of understanding the effect of sex hormones on melanin production

and that this field might be of further interest in the future.

Conclusion

Great advances have been made to understand pigment biology

and the processes underlying skin pigmentation in the last decade.

This research has led to development of safer and more effective

skin-lightening ingredients with many still directly targeting the

rate-limiting enzyme of melanogenesis, tyrosinase.

In this article, some ideas for other potential mechanistic targets

for control of human pigmentation have been proposed such as

control of glutaminergic/adrenergic signalling, sex hormones and

regulation of tetrahydrobiopterin (Fig. 5). It remains to be investi-

gated whether regulation of these pathways could evolve in potent

and safe skin-lightening regimes for future use.
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